Om jobbet
På ABB hjälper vi industrier att bli snabbare, mer resurseffektiva och hållbara. Här är framsteg en självklarhet - för dig, ditt team och hela världen. Som global marknadsledare ger vi dig rätt förutsättningar för att lyckas med det. Det kommer inte alltid att vara enkelt - utveckling kräver mod och styrka. På ABB är du aldrig ensam. Run what runs the world.Denna position rapporterar till:
R&D Team Lead
In modern process plants, overall control performance depends not only on how individual controllers are tuned but on how they are structured and interconnected across the plant. Designing this plantwide control architecture - defining control loops, interactions, and coordination strategies - remains a knowledge-intensive task that relies heavily on experienced control engineers.
This thesis explores how artificial intelligence and machine learning can be leveraged to support plantwide control architecture design. The goal is to develop a proof-of-concept tool that interprets process information and engineering documentation to recommend suitable control configurations and structures. By assisting engineers in the early design phase, the tool aims to improve consistency, accelerate project execution, and enhance knowledge reuse in process automation.
Details:
- Start: January/February 2026 , duration of 5 months
- 30 ECTS per student
- 1-2 students
- Location: On-site at ABB Corporate Research in Västerås (ABB may cover the accommodation)
Your role and responsibilities
Research questions:
- AI-Assisted Selection of Control Structures in Plantwide Automation
- Ontology and Knowledge Graph Development for Process Automation
- AI/ML for Control Strategy Classification and Recommendation
Goals:
- Develop an AI-Based Framework for Control Architecture Recommendation
- Demonstrate and Evaluate the Framework in an Industrial Context
Approach - the work will address the following points:
- Literature review on control structures and AI applications in process control
- Develop a prototype tool using existing LLM APIs (ABB AI)
- Implement basic P&ID interpretation (text extraction and pattern recognition)
- Create prompt engineering strategies for control structure recommendation
- Validate the tool with real test cases
Qualifications for the role
- Drive and interest in working with real-world use cases
- A background in control engineering or computer science/AI is suitable. We will provide support to help you build the required skills and knowledge during the project, especially in the areas of Machine learning, Large Language Models, Process control
- Programming environment: Python and MATLAB
- Self-driven and solution-oriented
- Good spoken and written English
- Ability to analyze results and draw conclusions
- Good soft skills and collaborative spirit
More about us
Supervisor Soroush Rastegarpour, soroush.rastegarpour@se.abb.com, will answer all your questions about the thesis topic and expectations. Recruiting Manager Linus Thrybom, +46 730 809 906, will answer your questions regarding the hiring.
Positions are filled continuously. Please apply with your CV, academic transcripts, and a cover letter in English. We look forward to receiving your application!
Kommande möjligheter Vänligen notera att denna annons syftar till att få in intresseanmälningar till en kandidatpool kopplat till det aktuella området, och det är därför inte en öppning till ett specifikt jobb just nu. Genom att ansöka uttrycker du ditt intresse för framtida karriärmöjligheter med ABB.
Vi värdesätter människor med olika bakgrund. Ansök idag för att ha möjlighet att bli aktuell för kommande roller och besök www.abb.com för att utforska hur vi driver utveckling över hela världen.
ABB AB
FöretagABB AB
Visa alla jobb för ABB AB


